AI doesn’t have to be a black box. These practical techniques help shine a light on your model’s mysterious inner workings. Make your AI more transparent, and you’ll improve trust in your results, combat data leakage and bias, and ensure compliance with legal requirements.
In Interpretable AI, you will learn:
Why AI models are hard to interpret
Interpreting white box models such as linear regression, decision trees, and generalized additive models
Partial dependence plots, LIME, SHAP and Anchors, and other techniques such as saliency mapping, network dissection, and representational learning
What fairness is and how to mitigate bias in AI systems
Implement robust AI systems that are GDPR-compliant
Interpretable AI opens up the black box of your AI models. It teaches cutting-edge techniques and best practices that can make even complex AI systems interpretable. Each method is easy to implement with just Python and open source libraries. You’ll learn to identify when you can utilize models that are inherently transparent, and how to mitigate opacity when your problem demands the power of a hard-to-interpret deep learning model.
about the technology
It’s often difficult to explain how deep learning models work, even for the data scientists who create them. Improving transparency and interpretability in machine learning models minimizes errors, reduces unintended bias, and increases trust in the outcomes. This unique book contains techniques for looking inside “black box” models, designing accountable algorithms, and understanding the factors that cause skewed results.
about the book
Interpretable AI teaches you to identify the patterns your model has learned and why it produces its results. As you read, you’ll pick up algorithm-specific approaches, like interpreting regression and generalized additive models, along with tips to improve performance during training. You’ll also explore methods for interpreting complex deep learning models where some processes are not easily observable. AI transparency is a fast-moving field, and this book simplifies cutting-edge research into practical methods you can implement with Python.
what's inside
Techniques for interpreting AI models
Counteract errors from bias, data leakage, and concept drift
Measuring fairness and mitigating bias
Building GDPR-compliant AI systems
about the reader
For data scientists and engineers familiar with Python and machine learning.
about the author
Ajay Thampi is a machine learning engineer focused on responsible AI and fairness.
eBook
$47.99
$31.19
you save $16.80 (35%)
print
$59.99
$35.99
you save $24.00 (40%)
online + audio
$49.99
$32.49
you save $17.50 (35%)
with subscription
$24.99
A sound introduction for practitioners to the exciting field of interpretable AI.
Ajay Thampi explains in an easy-to-understand way the importance of interpretability in machine learning.
Effectively demystifies interpretable AI for novice and pro alike.
Concrete examples help the understanding and building of interpretable AI systems.
related titles
related titles
choose your plan
pro
monthly
annual
$24.99
$249.99
only $20.83 per month
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
choose another free product every time you renew
choose twelve free products per year
exclusive 50% discount on all purchases
Interpretable AI ebook for free
team
monthly
annual
$49.99
$399.99
only $33.33 per month
five seats for your team
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!