Business runs on tabular data in databases, spreadsheets, and logs. Crunch that data using deep learning, gradient boosting, and other machine learning techniques.
Machine Learning for Tabular Data teaches you to train insightful machine learning models on common tabular business data sources such as spreadsheets, databases, and logs. You’ll discover how to use XGBoost and LightGBM on tabular data, optimize deep learning libraries like TensorFlow and PyTorch for tabular data, and use cloud tools like Vertex AI to create an automated MLOps pipeline.
Machine Learning for Tabular Data will teach you how to:
Pick the right machine learning approach for your data
Apply deep learning to tabular data
Deploy tabular machine learning locally and in the cloud
Pipelines to automatically train and maintain a model
Machine Learning for Tabular Data covers classic machine learning techniques like gradient boosting, and more contemporary deep learning approaches. By the time you’re finished, you’ll be equipped with the skills to apply machine learning to the kinds of data you work with every day.
about the technology
Machine learning can accelerate everyday business chores like account reconciliation, demand forecasting, and customer service automation—not to mention more exotic challenges like fraud detection, predictive maintenance, and personalized marketing. This book shows you how to unlock the vital information stored in spreadsheets, ledgers, databases and other tabular data sources using gradient boosting, deep learning, and generative AI.
about the book
Machine Learning for Tabular Data delivers practical ML techniques to upgrade every stage of the business data analysis pipeline. In it, you’ll explore examples like using XGBoost and Keras to predict short-term rental prices, deploying a local ML model with Python and Flask, and streamlining workflows using large language models (LLMs). Along the way, you’ll learn to make your models both more powerful and more explainable.
what's inside
Master XGBoost
Apply deep learning to tabular data
Deploy models locally and in the cloud
Build pipelines to train and maintain models
about the reader
For readers experienced with Python and the basics of machine learning.
about the authors
Mark Ryan is the AI Lead of the Developer Knowledge Platform at Google. A three-time Kaggle Grandmaster, Luca Massaron is a Google Developer Expert (GDE) in machine learning and AI. He has published 17 other books.
eBook
$47.99
$31.19
you save $16.80 (35%)
print
$59.99
$38.99
you save $21.00 (35%)
with subscription
$24.99
related titles
related titles
choose your plan
pro
monthly
annual
$24.99
$249.99
only $20.83 per month
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
choose another free product every time you renew
choose twelve free products per year
exclusive 50% discount on all purchases
Machine Learning for Tabular Data ebook for free
team
monthly
annual
$49.99
$399.99
only $33.33 per month
five seats for your team
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!