Modern data science solutions need to be clean, easy to read, and scalable. In Mastering Large Datasets with Python, author J.T. Wolohan teaches you how to take a small project and scale it up using a functionally influenced approach to Python coding. You’ll explore methods and built-in Python tools that lend themselves to clarity and scalability, like the high-performing parallelism method, as well as distributed technologies that allow for high data throughput. The abundant hands-on exercises in this practical tutorial will lock in these essential skills for any large-scale data science project.
about the technology
Programming techniques that work well on laptop-sized data can slow to a crawl—or fail altogether—when applied to massive files or distributed datasets. By mastering the powerful map and reduce paradigm, along with the Python-based tools that support it, you can write data-centric applications that scale efficiently without requiring codebase rewrites as your requirements change.
about the book
Mastering Large Datasets with Python teaches you to write code that can handle datasets of any size. You’ll start with laptop-sized datasets that teach you to parallelize data analysis by breaking large tasks into smaller ones that can run simultaneously. You’ll then scale those same programs to industrial-sized datasets on a cluster of cloud servers. With the map and reduce paradigm firmly in place, you’ll explore tools like Hadoop and PySpark to efficiently process massive distributed datasets, speed up decision-making with machine learning, and simplify your data storage with AWS S3.
what's inside
An introduction to the map and reduce paradigm
Parallelization with the multiprocessing module and pathos framework
Hadoop and Spark for distributed computing
Running AWS jobs to process large datasets
about the reader
For Python programmers who need to work faster with more data.
about the author
J. T. Wolohan is a lead data scientist at Booz Allen Hamilton, and a PhD researcher at Indiana University, Bloomington.
eBook
$39.99
$31.99
you save $8.00 (20%)
print
$49.99
$39.99
you save $10.00 (20%)
online + audio
$39.99
$31.99
you save $8.00 (20%)
with subscription
$24.99
A clear and efficient path to mastery of the map and reduce paradigm for developers of all levels.
An amazing book for anybody looking to add parallel processing and the map/reduce pattern to their toolkit.
Learn fundamentals of MapReduce and other core concepts and save money on expensive hardware!
A comprehensive guide to the fundamentals of efficient Python data processing.
related titles
related titles
choose your plan
pro
monthly
annual
$24.99
$249.99
only $20.83 per month
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
choose another free product every time you renew
choose twelve free products per year
exclusive 50% discount on all purchases
Mastering Large Datasets with Python ebook for free
team
monthly
annual
$49.99
$499.99
only $41.67 per month
five seats for your team
access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
choose another free product every time you renew
choose twelve free products per year
exclusive 50% discount on all purchases
Mastering Large Datasets with Python ebook for free