5, 10 or 20 seats+ for your team - learn more
Help your company’s messenger application provide better product recommendations for its customers. As a data engineer at the company, your task is to create a machine learning (ML) pipeline using the Amazon Personalize service. You’ll use CloudFormation templates to create a repository for the required AWS infrastructure resources, and AWS Glue to transform the raw user engagement data. Using Amazon Personalize, you’ll import a dataset and create and train the Amazon Personalize ML model for your users’ recommendations. To complete the project, you’ll create a workflow to train your Amazon Personalize recommendation solution using AWS Step Functions and user engagement events. When you’re done, you’ll have designed an ML pipeline using the Amazon Personalize API that provides product recommendations that suit your users best.
This liveProject is for intermediate Python programmers who are interested in building an ML data pipeline using AWS.
TOOLSgeekle is based on a wordle clone.