5, 10 or 20 seats+ for your team - learn more
In this liveProject, you’ll explore the basics of anomaly detection by analyzing a medical dataset using unsupervised learning. You’ll create a model that can determine whether patients referred to a clinic have abnormal thyroid function. To accomplish this, you’ll download and prepare your dataset, and then utilize scikit-learn to compare different anomaly detection algorithms to find the most effective. You are going to use Isolation Forest, the Local Outlier Factor (LOF), One-Class SVM and Robust Covariance.
geekle is based on a wordle clone.