Causal AI you own this product

Robert Ness
  • MEAP began August 2022
  • Publication in February 2025 (estimated)
  • ISBN 9781633439917
  • 520 pages (estimated)
  • printed in black & white

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside
How do you know what might have happened, had you done things differently? Causal machine learning gives you the insight you need to make predictions and control outcomes based on causal relationships instead of pure correlation, so you can make precise and timely interventions.

In Causal AI you will learn how to:

  • Build causal reinforcement learning algorithms
  • Implement causal inference with modern probabilistic machine tools such as PyTorch and Pyro
  • Compare and contrast statistical and econometric methods for causal inference
  • Set up algorithms for attribution, credit assignment, and explanation
  • Convert domain expertise into explainable causal models

Causal AI is a practical introduction to building AI models that can reason about causality. Author Robert Ness, a leading researcher in causal AI at Microsoft Research, brings his unique expertise to this cutting-edge guide. His clear, code-first approach explains essential details of causal machine learning that are hidden in academic papers. Everything you learn can be easily and effectively applied to industry challenges, from building explainable causal models to predicting counterfactual outcomes.

about the technology

Causal machine learning is a major milestone in machine learning, allowing AI models to make accurate predictions based on causes rather than just correlations. Causal techniques help you make models that are more robust, explainable, and fair, and have a wide range of applications, from improving recommendation engines to perfecting self-driving cars.

about the book

Causal AI teaches you how to build machine learning and deep learning models that implement causal reasoning. Discover why leading AI engineers are so excited by causal reasoning, and develop a high-level understanding of this next major trend in AI. New techniques are demonstrated with example models for solving industry-relevant problems. You’ll learn about causality for recommendations; causal modeling of online conversions; and uplift, attribution, and churn modeling. Each technique is tested against a common set of problems, data, and Python libraries, so you can compare and contrast which will work best for you.

about the reader

For data scientists and machine learning engineers. A familiarity with probability and statistics will be helpful, but not essential, to begin this guide. Examples in Python.

about the author

Robert Ness is a leading researcher in causal AI at Microsoft Research. He is a contributor to open-source causal inference packages such as Python’s DoWhy and R’s bnlearn.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Causal AI ebook for free

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Causal AI ebook for free