5, 10 or 20 seats+ for your team - learn more
GANs in Action teaches you how to build and train your own Generative Adversarial Networks, one of the most important innovations in deep learning. In this book, you'll learn how to start building your own simple adversarial system as you explore the foundation of GAN architecture: the generator and discriminator networks.
Generative Adversarial Networks, GANs, are an incredible AI technology capable of creating images, sound, and videos that are indistinguishable from the "real thing." By pitting two neural networks against each other—one to generate fakes and one to spot them—GANs rapidly learn to produce photo-realistic faces and other media objects. With the potential to produce stunningly realistic animations or shocking deepfakes, GANs are a huge step forward in deep learning systems.
GANs in Action teaches you to build and train your own Generative Adversarial Networks. You'll start by creating simple generator and discriminator networks that are the foundation of GAN architecture. Then, following numerous hands-on examples, you'll train GANs to generate high-resolution images, image-to-image translation, and targeted data generation. Along the way, you'll find pro tips for making your system smart, effective, and fast.
For data professionals with intermediate Python skills, and the basics of deep learning–based image processing.
Comprehensive and in-depth coverage of the future of AI.
An incredibly useful mix of practical and academic information.
A great systematization of the rapidly evolving and vast GAN landscape.
Excellent writing combined with easy-to-grasp mathematical explanations.
Strikes that rare balance between an applied programming book, an academic book heavy on theory, and a conversational blog post on machine learning techniques.