Analyze Reports with Hugging Face you own this product

prerequisites
intermediate Python (particularly NumPy and pandas) • matrix multiplication • derivatives and chain rule
skills learned
understand the attention mechanism (Transformers) • build a model pipeline with Hugging Face • extract and prepare data from PDF files
Nicole Königstein
1 week · 6-8 hours per week · INTERMEDIATE

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside

You’re a data scientist at Finative, an environmental, social, and governance (ESG) analytics company that analyzes a high volume of data using advanced natural language processing (NLP) techniques in order to provide its clients insights for sustainable investing. Recently, your CEO has decided that Finative should increase its own financial sustainability. Your task is to classify sustainability reports of a publicly traded company in an efficient and sustainable way.

You’ll learn the fundamental mathematics—including backpropagation, matrix multiplication, and attention mechanisms—of Transformers, empowering you to optimize your model’s performance, improve its efficiency, and handle undesirable model predictions. You’ll use Python’s pdfplumber library to extract text from a sustainability report for quick delivery to your CEO. To further increase efficiency, you’ll save training time by using a language model that’s been pre-trained with ESG data to build a pipeline for the model and classify the sustainability report.

This project is designed for learning purposes and is not a complete, production-ready application or solution.

project author

Nicole Koenigstein

Nicole Königstein currently works as data science and technology lead at impactvise, an ESG analytics company, and as a quantitative researcher and technology lead at Quantmate, an innovative FinTech startup that leverages alternative data as part of its predictive modeling strategy. She’s a regular speaker, sharing her expertise at conferences such as ODSC Europe. In addition, she teaches Python, machine learning, and deep learning, and holds workshops at conferences including the Women in Tech Global Conference.

prerequisites

This liveProject is for ML engineers, intermediate-level Python programmers, and early-stage data scientists who are familiar with the basics of linear algebra. To begin these liveProjects you’ll need to be familiar with the following:

TOOLS
  • Intermediate Python (declaring variables, loops, branches, working with arrays)
  • How to use Jupyter Notebook
  • Understanding of vectors, matrices, and derivatives
  • Basic familiarity with NumPy (indexing arrays, array creation, and manipulation)
  • Basic familiarity with scikit-learn (how to import and use classes such as sklearn.decomposition)
TECHNIQUES
  • Basic linear algebra
  • Basic calculus
  • Basic data science

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Analyze Reports with Hugging Face project for free