Content-Based Similarities you own this product

prerequisites
intermediate Python • basics of NumPy, pandas, scikit-learn, and machine learning
skills learned
define and compute similarities between users and items using content and metadata • define recommender systems based on the definition of when two users or items are close
Alejandro Bellogin
1 week · 4-6 hours per week · BEGINNER

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside

In this liveProject, you’ll build a movie recommendation system based on the content and metadata of movies in your system. This system is intended to maximize the satisfaction of your movie-watching users. You’ll start with an analysis to determine the content of your movies, then use that data to implement content-based similarities for both products and users. You’ll build and evaluate your recommender system based on these connections, till it’s the best it can be!

This project is designed for learning purposes and is not a complete, production-ready application or solution.

project author

Alejandro Bellogin
Alejandro Bellogín is an Associate Professor at Universidad Autónoma de Madrid. Previously, he held a post-doctoral research grant with the Centrum Wiskunde and Informatica in Amsterdam, The Netherlands. He has supervised around ten Master Theses, one PhD thesis, and more than twenty Bachelor Theses on recommender systems. His publication history includes around 80 publications about different aspects of recommender systems.

prerequisites

The liveProject is for intermediate Python programmers who know the basics of data science. To begin this liveProject, you will need to be familiar with the following:


TOOLS
  • Intermediate Python, min. version 3.6.0
  • Basics of data structures
  • Basics of NumPy, min. version 1.19.0
  • Basics of pandas, min. version 1.1.0
  • Basics of scikit-learn, min. version 0.20.3
  • Basics of Jupyter Notebook
TECHNIQUES
  • Algebra and calculus
  • Basics of machine learning

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.

choose your plan

team

monthly
annual
$49.99
$499.99
only $41.67 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Content-Based Similarities project for free