Latent Dirichlet Allocation you own this product

prerequisites
intermediate Python • linear algebra • probability • basics of machine learning
skills learned
implementing a simplified version of the LDA algorithm • preprocessing and converting a text corpus into a document-to-word matrix • generating topics using Gensim’s LDA algorithm • evaluating generated topics using Coherence and Diversity metrics • visualizing derived topics with a variety of techniques
Aneesha Bakharia
1 week · 6-8 hours per week · INTERMEDIATE

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside

In this liveProject, you’ll use the latent dirichlet allocation (LDA) algorithm from the Gensim library to model topics from a magazine’s article back catalog. Thanks to your work on topic modeling, the new Policy and Ethics editor will be better equipped to strategically commission new articles for under-represented topics. You’ll build your text preprocessing pipeline, use topic coherence to find the number of topics, and visualize and curate the algorithm’s output for your stakeholders to easily read.

This project is designed for learning purposes and is not a complete, production-ready application or solution.

project author

Aneesha Bakharia
Aneesha Bakharia completed her PhD in interactive topic modeling at Queensland University of Technology in Australia. She is currently the Manager of Learning Analytics at The University of Queensland where she leads a team of programmers and data scientists. She has written 10 books on programming and web development for Cengage publishing. She also blogs about data science related topics, including topic modeling and she publishes academic peer reviewed publications on educational technologies and learning analytics.

prerequisites

This liveProject is for data scientists and programmers who are confident programming with Python and the Python data ecosystem. To begin this liveProject you will need to be familiar with the following:


TOOLS
  • Intermediate Python
  • Basics of Jupyter Notebook
TECHNIQUES
  • Linear algebra
  • Referencing Matrix cells by row and column index
  • Matrix subtraction, multiplication, and division
  • Basic probability
  • Basics of machine learning

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.

choose your plan

team

monthly
annual
$49.99
$499.99
only $41.67 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Latent Dirichlet Allocation project for free