5, 10 or 20 seats+ for your team - learn more
The company you work for, which provides a news feed aggregator, is plagued with an influx of hoaxes that are putting its reputation in jeopardy. The data science team has already trained a set of complex natural language processing (NLP) models to distinguish real news from fake news. Your task is to build a service, using Ray, that exposes the endpoint that returns the JSON object categorized as either a hoax or news. Then, you’ll optimize the service for performance and speed, enabling it to perform more parallel operations and use as many GPUs as possible. When you’re finished, you’ll have firsthand experience using some of Ray Serve’s advanced features for serving and optimizing a compound model—and you’ll have kept your company’s reputation safe.
This liveProject is for data scientists who want to prepare their ML models for deployment to production, as well as software engineers who need to overcome the challenges of ML applications. To begin these liveProjects you’ll need to be familiar with the following:
TOOLS