5, 10 or 20 seats+ for your team - learn more
You’re a data scientist at EKKo Inc., a machine learning consultancy that’s working on an embedded system to help deaf or hard of hearing people participate in online meetings and events on their mobile devices. To help the system recognize the hand gestures that represent the letters in American Sign Language (ASL), your task is to classify them using a convolutional neural network (CNN), an algorithm widely used for image processing applications.
You’ll write a Python script that preprocesses the ASL dataset, ensuring the model can interpret it. Using TensorFlow, a popular choice for such tasks, you’ll create and configure the CNN model. You’ll train the model and improve its performance by adding regularization to avoid overfitting, fine-tuning the learning rate (LR) to increase training speed, and introducing callbacks to monitor the training process. When you’re done, you’ll have firsthand experience using TensorFlow tools to configure various CNN hyperparameters, train a CNN onto an embedded board, and generate predictions from the CNN.
The liveProject is for intermediate Python programmers who know the basics of data science. To begin these liveProjects you’ll need to be familiar with the following:
TOOLSgeekle is based on a wordle clone.